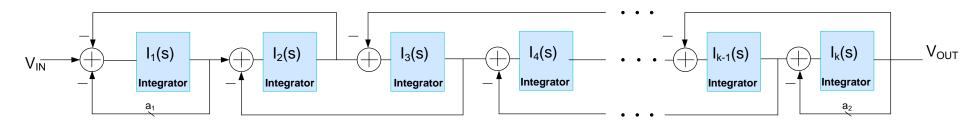
EE 508 Lecture 31

Transconductor Design

Leapfrog Filters

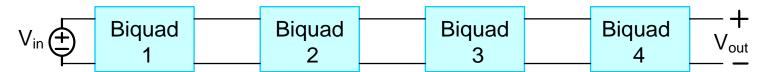


Introduced by Girling and Good, Wireless World, 1970

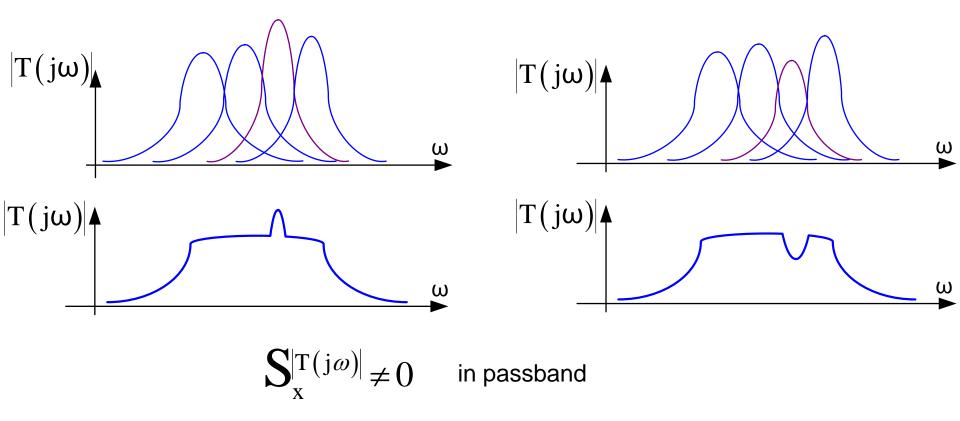
This structure has some very attractive properties and is widely used though the real benefits and limitations of the structure are often not articulated

Review from last lecture

Implications of Theorem 1

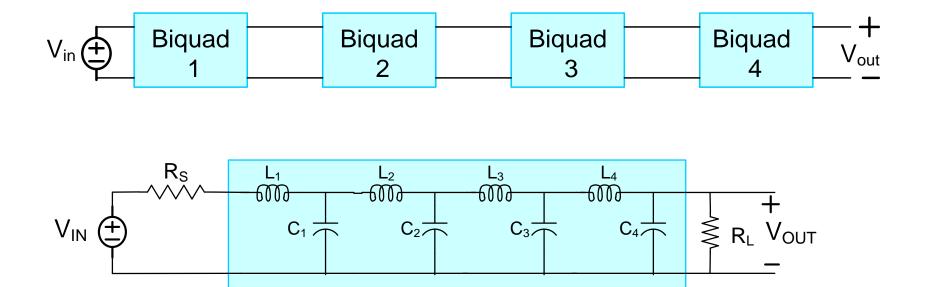


If a component in a biquad changes a little, there is often a large change in the passband gain characteristics (depicted as bandpass)



Review from last lecture

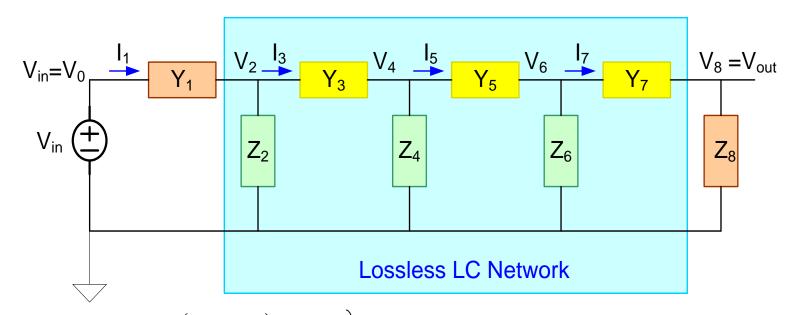
Implications of Theorem 1



Good doubly-terminated LC networks often much less sensitive to most component values in the passband than are cascaded biquads!

This is a major advantage of the LC networks but can not be applied practically in most integrated applications or even in pc-board based designs

Doubly-terminated Ladder Network with Low Passband Sensitivities



$$I_{1} = (V_{0} - V_{2}) Y_{1}$$

$$V_{2} = (I_{1} - I_{3}) Z_{2}$$

$$I_{3} = (V_{2} - V_{4}) Y_{3}$$

$$V_{4} = (I_{3} - I_{5}) Z_{4}$$

$$I_{5} = (V_{4} - V_{6}) Y_{5}$$

$$V_{6} = (I_{5} - I_{7}) Z_{6}$$

$$I_{7} = (V_{6} - V_{8}) Y_{7}$$

$$V_{8} = I_{7} Z_{8}$$

Complete set of independent equations that characterize this filter

Solution of this set of equations is tedious

All sensitivity properties of this circuit are inherently embedded in these equations!

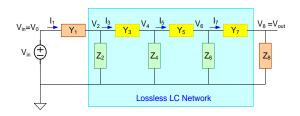
Review from last lecture Consider now only the set of equations and disassociate them from the circuit from where they came

$$V_{1}^{'} = (V_{0} - V_{2}) \frac{1}{R_{1}} \qquad V_{5}^{'} = (V_{4} - V_{6}) \frac{1}{sL_{5}}$$

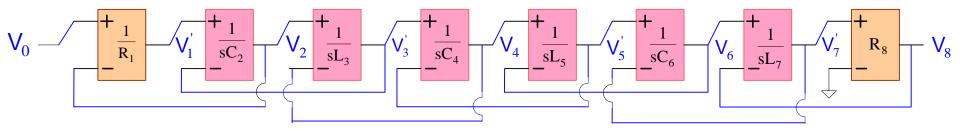
$$V_{2} = (V_{1}^{'} - V_{3}^{'}) \frac{1}{sC_{2}} \qquad V_{6} = (V_{5}^{'} - V_{7}^{'}) \frac{1}{sC_{6}}$$

$$V_{3}^{'} = (V_{2} - V_{4}) \frac{1}{sL_{3}} \qquad V_{7}^{'} = (V_{6} - V_{8}) \frac{1}{sL_{7}}$$

$$V_{4} = (V_{3}^{'} - V_{5}^{'}) \frac{1}{sC_{4}} \qquad V_{8} = V_{7}^{'}R_{8}$$



The interconnections that complete each equation can now be added



Consider lowpass to bandpass transformations

Un-normalized

$$s_n \rightarrow \frac{s^2 + \omega_0^2}{sBW}$$

$$\frac{1}{s_n} \to \frac{sBW}{s^2 + \omega_0^2}$$

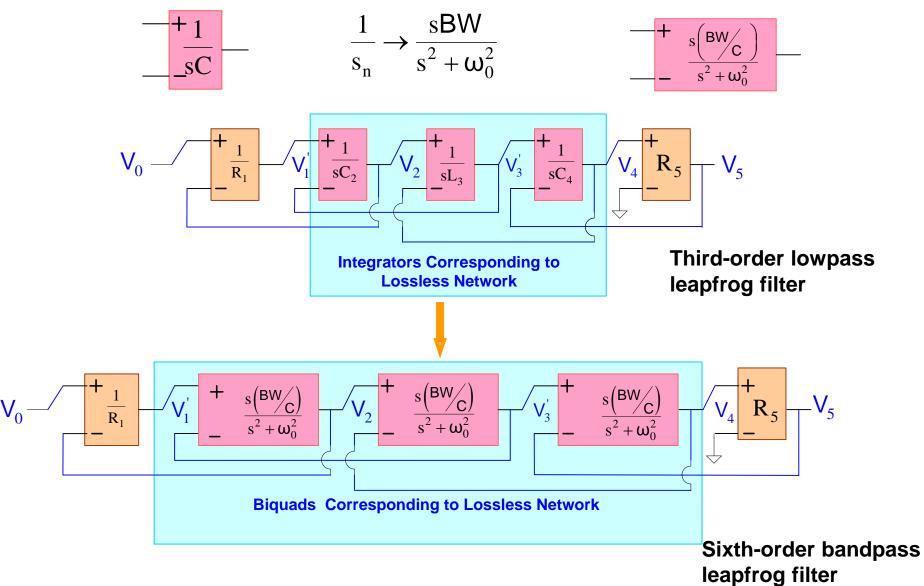
$$\frac{1}{s_n + \alpha} \to \frac{sBW}{s^2 + s\alpha BW + \omega_0^2}$$

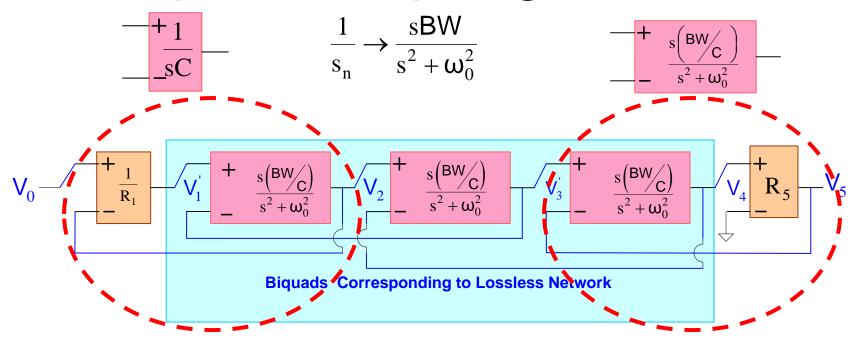
Normalized

$$s_n \rightarrow \frac{s^2 + 1}{sBW_n}$$

$$\frac{1}{s_n} \rightarrow \frac{sBW_n}{s^2 + 1}$$

$$\frac{1}{s_n + \alpha} \to \frac{sBW_n}{s^2 + s\alpha BW_n + 1}$$

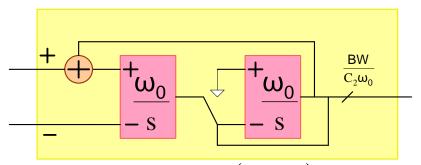




"Loss" at input and/or output can usually be incorporated into finite-Q terminating biquads instead of requiring additional voltage amplifiers

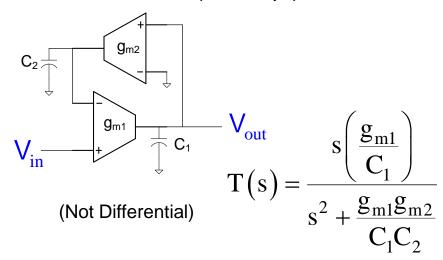
Integrator-based biquads

Infinite Q bandpass biquad

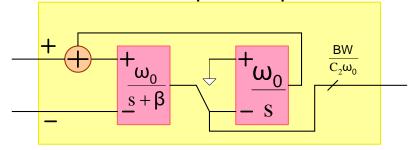


$$T(s) = \frac{s(BW/C)}{s^2 + \omega_0^2}$$

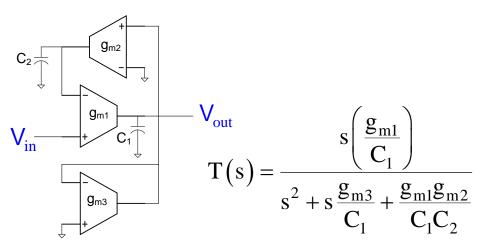
OTA-C Implementations (Concept)



Finite Q bandpass biquad



$$T(s) = \frac{s(BW/C)}{s^2 + s\alpha BW + \omega_0^2}$$

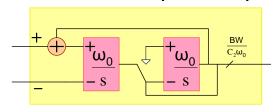


(Not Differential)

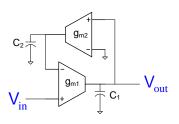
Integrator-based biquads

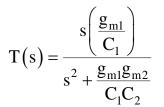
OTA-C Implementations

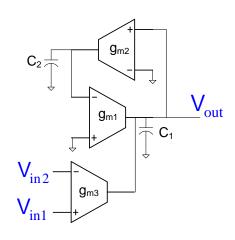
Infinite Q bandpass biquad



$$T(s) = \frac{s(BW/C)}{s^2 + \omega_0^2}$$

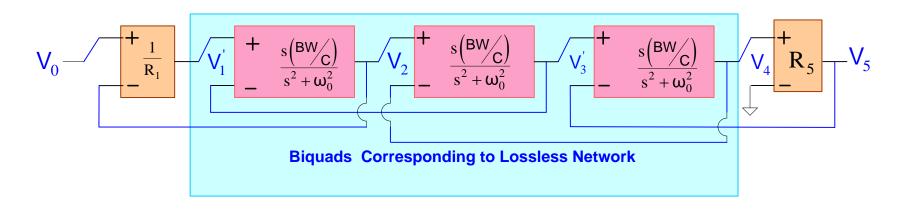






$$V_{OUT}(s) = \frac{s\left(\frac{g_{m3}}{C_1}\right)[V_{in1} - V_{in2}]}{s^2 + \frac{g_{m1}g_{m2}}{C_1C_2}}$$

Multiple inputs can be added to lossy integrator too!



Note the lossless biquads are infinite Q structures!

Is it easy or practical to implement infinite Q biquads?

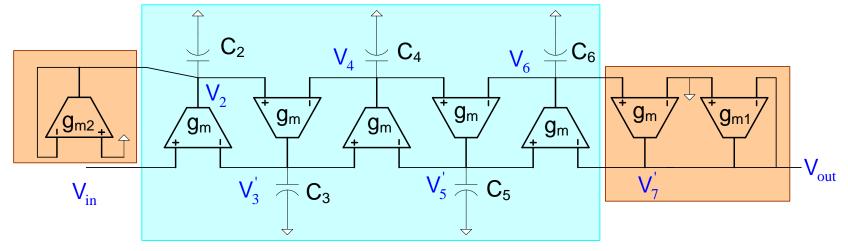
Yes – have shown by example in g_m-C family and also easy in other families

Are there stability concerns about the infinite Q biquads?

Stability of overall leapfrog structure of concern, not stability of individual biquads Overall leapfrog structure is robust with low passband sensitivities!

Leapfrog Implementations

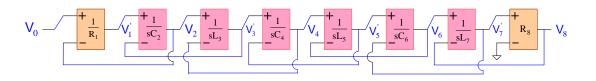
Fifth-order Lowpass Leapfrog with OTAs

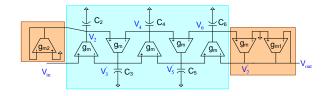


$$\begin{split} V_{1}^{'} &= \frac{1}{R_{1}} (V_{in} - V_{2}) \\ V_{2} &= \frac{g_{m}}{C_{2}} (V_{1}^{'} - V_{3}^{'}) \\ V_{3}^{'} &= \frac{g_{m}}{C_{3}} (V_{2} - V_{4}) \end{split} \qquad V_{4} = \frac{g_{m}}{S} (V_{3}^{'} - V_{5}^{'}) \\ V_{5}^{'} &= \frac{g_{m}}{C_{5}} (V_{4} - V_{6}) \\ V_{6}^{'} &= \frac{g_{m}}{C_{6}} (V_{5} - V_{7}^{'}) \end{split}$$

Practically can either fix g_ms and vary capacitors or fix capacitors and vary g_m's

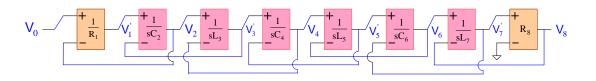
Leapfrog Filters A Seminal Contribution

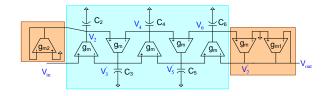




- A valuable contribution ?
- A timely contribution ?
- A clever idea?
- Would someone else have come up with it had Girling and Good not made the discovery?
- Example of unlikely publication making major disclosure

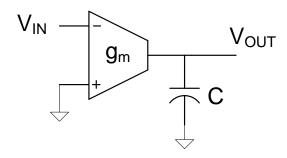
Leapfrog Filters A Seminal Contribution





- A valuable contribution ?
- A timely contribution ?
- A clever idea?
- Would someone else have come up with it had Girling and Good not made the discovery?
- Example of unlikely publication making major disclosure

Transconductor Design



Transconductor-based filters depend directly on the g_m of the transconductor

Feedback is not used to make the filter performance insensitive to the transconductance gain

Linearity and spectral performance of the filter strongly dependent upon the linearity of the transconductor

Often can not justify elegant linearization strategies in the transconductors because of speed, area, and power penalties

Seminal Work on the OTA

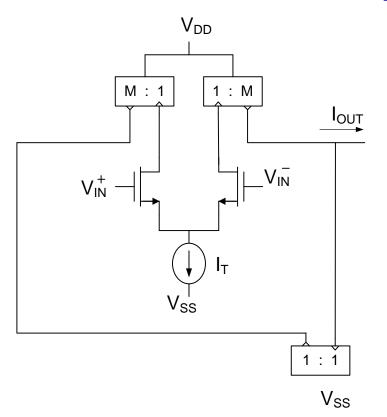
OTA Obsoletes Op Amp

by C.F. Wheatley H.A. Wittlinger

From:

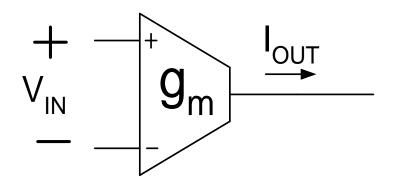
1969 N.E.C. PROCEEDINGS
December 1969

Current Mirror Op Amp W/O CMFB



$$g_{mEQ} = Mg_{m1}$$

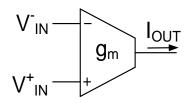
Often termed an OTA

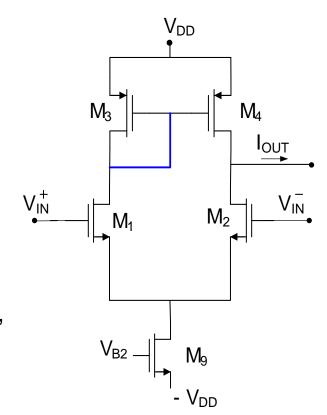


Introduced by Wheatley and Whitlinger in 1969

$$\mathbf{I}_{\scriptscriptstyle \mathsf{OUT}} = g_{\scriptscriptstyle \mathsf{m}} V_{\scriptscriptstyle \mathsf{IN}}$$

Basic OTA based upon differential pair

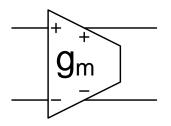


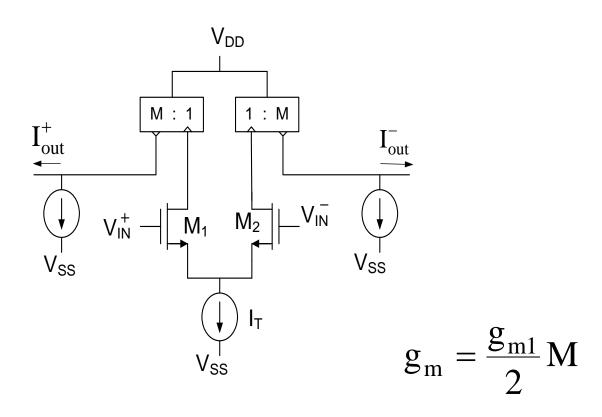


 $g_{\rm m} = g_{\rm m1}$

Assume M_1 and M_2 matched, M_3 and M_4 matched

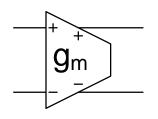
Differential output OTA based upon differential pair

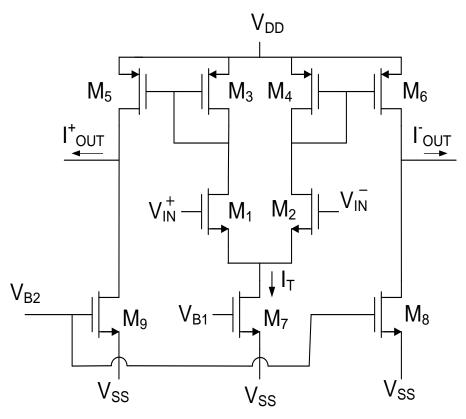




CMFB needed for the two output biasing current sources

Differential output OTA based upon differential pair

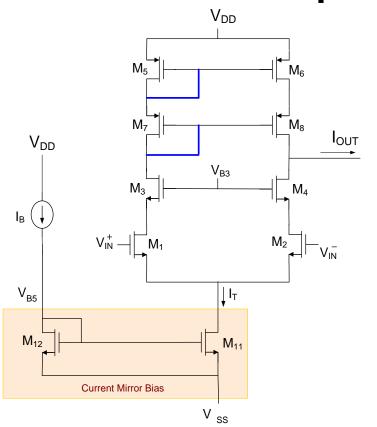




$$g_{\rm m} = \frac{g_{\rm m1}}{2} M$$

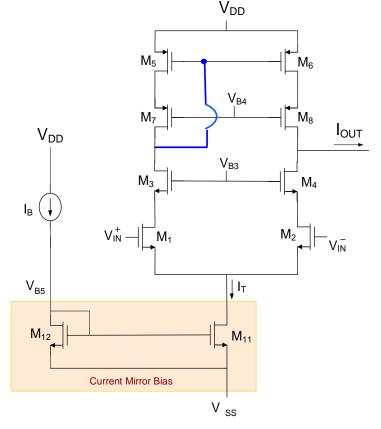
CMFB needed for the two output biasing current sources

Telescopic Cascode OTA



l_{OUT}

 g_{m}

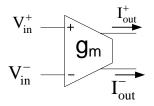


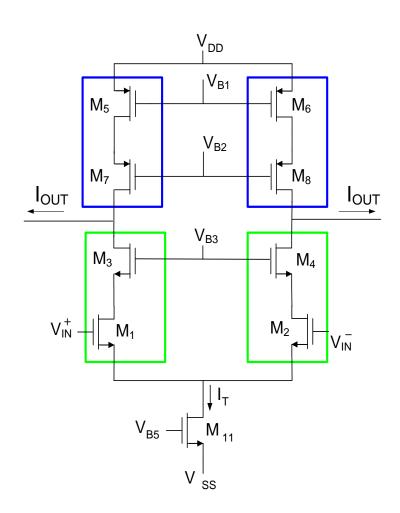
Standard p-channel Cascode Mirror

Wide-Swing p-channel Cascode Mirror

- Current-Mirror p-channel Bias to Eliminate CMFB
- Only single-ended output available

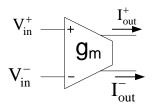
Telescopic Cascode OTA

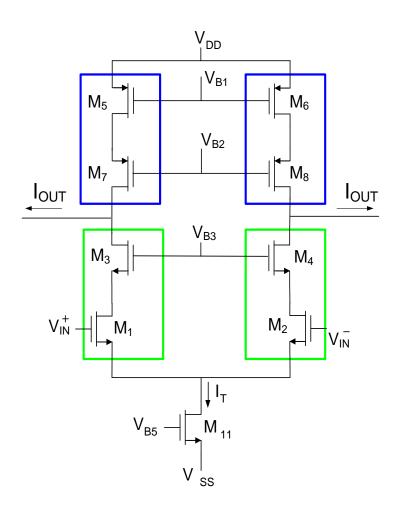




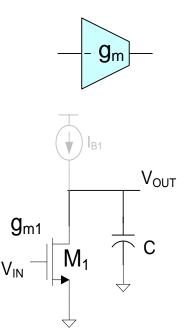
Review from last lecture

Telescopic Cascode OTA

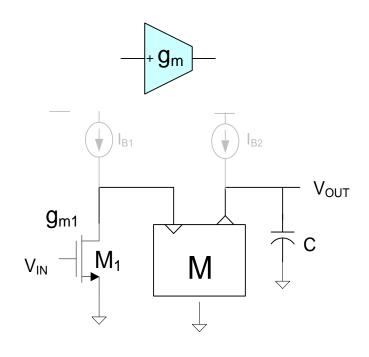




Single-ended High-Frequency TA

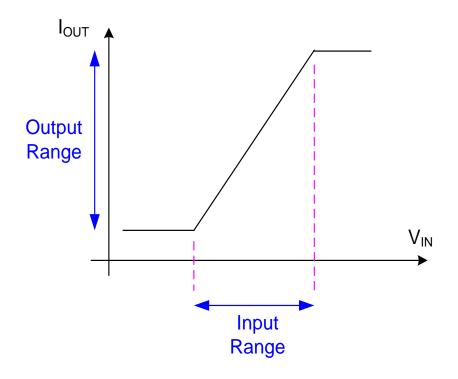


$$g_{\rm m} = -g_{\rm ml}$$



$$g_{m} = Mg_{m1}$$

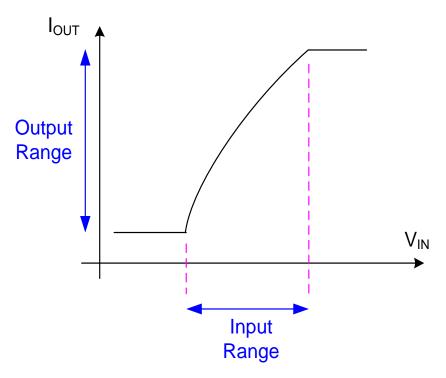
Signal Swing and Linearity



Ideal Scenario:

Completely Linear over Input and Output Range

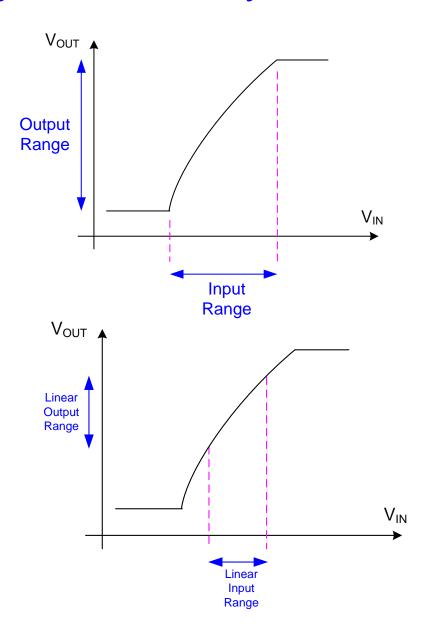
Signal Swing and Linearity



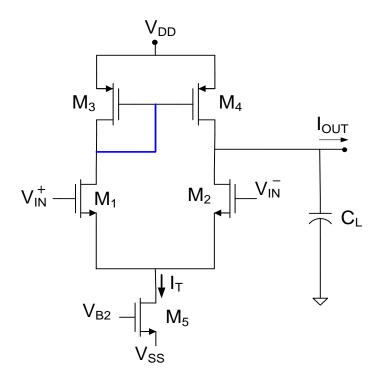
Realistic Scenario:

- Modest Nonlinearity throughout Input Range
- But operation will be quite linear over subset of this range

Signal Swing and Linearity

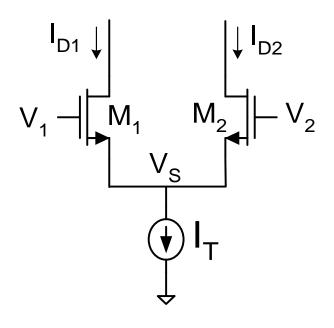


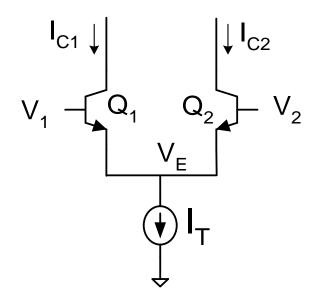
Linearity of Amplifiers



Strongly dependent upon linearity of transconductance of differential pair

Differential Input Pairs

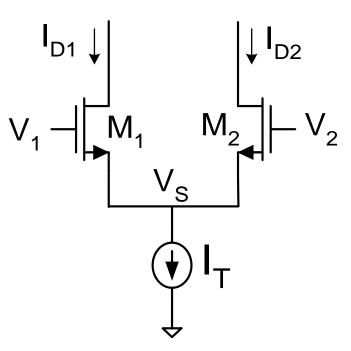




MOS Differential Pair

Bipolar Differential Pair

MOS Differential Pair



$$V_d = V_2 - V_1$$

$$\begin{vmatrix}
I_{D1} \downarrow & & & \\
V_{1} \downarrow & & & \\
V_{1} \downarrow & & & \\
V_{S} \downarrow & & \\
V_{S} \downarrow & & & \\
V_{S} \downarrow & & \\
V_{S} \downarrow & & \\
V_{S} \downarrow & & \\$$

$$V_{d} = \sqrt{\frac{2L}{\mu C_{OX}W}} \left(\sqrt{I_{T} - I_{D1}} - \sqrt{I_{D1}} \right)$$

$$V_{d} = \sqrt{\frac{2L}{\mu C_{OX}W}} \left(\sqrt{I_{D2}} - \sqrt{I_{T} - I_{D2}} \right)$$

MOS Differential Pair

$$V_{d} = \sqrt{\frac{2L}{\mu C_{OX}W}} \left(\sqrt{I_{T} - I_{D1}} - \sqrt{I_{D1}} \right)$$

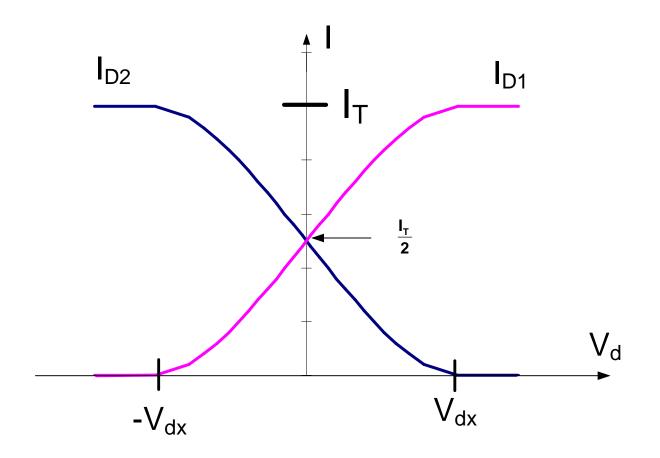
$$V_{d} = \sqrt{\frac{2L}{\mu C_{ox} W}} \left(\sqrt{I_{D2}} - \sqrt{I_{T} - I_{D2}} \right)$$

What values of V_d will cause all of the current to be steered to the left or the right?

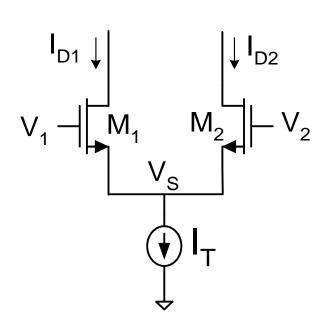
$$V_{dx} = \pm \sqrt{\frac{2L}{\mu C_{ox}W}} \left(\sqrt{I_{T}} \right)$$

Transfer Characteristics of MOS Differential Pair

$$\mathbf{V_{d}} = \sqrt{\frac{2L}{\mu C_{ox} W}} \left(\sqrt{I_{D2}} - \sqrt{I_{T} - I_{D2}} \right) \qquad \qquad \mathbf{V_{dx}} = \pm \sqrt{\frac{2L}{\mu C_{ox} W}} \left(\sqrt{I_{T}} \right)$$



Q-point Calculations for MOS Differential Pair



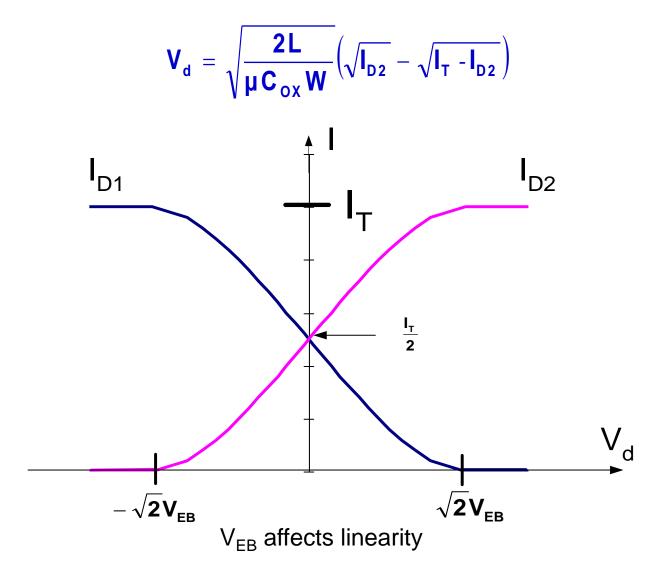
$$\frac{I_{T}}{2} = \frac{\mu C_{OX} W}{2L} (V_{EB})^{2}$$

$$V_{EB} = \sqrt{I_{T}} \sqrt{\frac{L}{\mu C_{OX} W}}$$

Observe!!

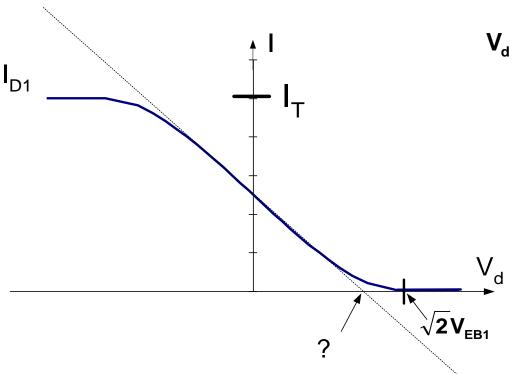
$$\mathbf{V}_{\mathsf{dx}} = \pm \sqrt{2} \mathbf{V}_{\mathsf{EB}}$$

Transfer Characteristics of MOS Differential Pair



How linear is the amplifier?

How linear is the amplifier?



$$\mathbf{V_d} = \sqrt{\frac{2L}{\mu C_{ox} W}} \Big(\sqrt{\mathbf{I_T} - \mathbf{I_{D1}}} - \sqrt{\mathbf{I_{D1}}} \Big)$$

Consider the fit line:

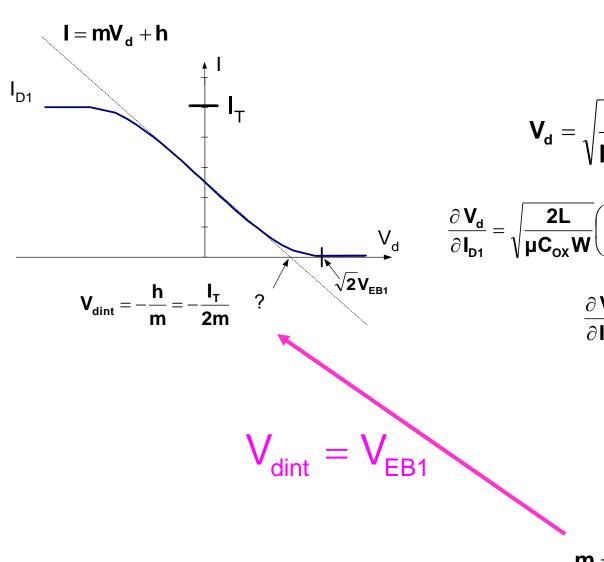
$$I = mV_d + h$$

When $V_d=0$, $I=I_T/2$, thus

$$h = \frac{I_T}{2}$$

$$I_{dint} = -\frac{h}{m} = -\frac{I_T}{2m}$$

$$\mathbf{m} = \frac{\partial \left. \mathbf{I}_{\text{D1}} \right|_{\mathbf{Q} - \text{pt}}}{\partial \left. \mathbf{V}_{\text{d}} \right|_{\mathbf{Q} - \text{pt}}}$$



$$\mathbf{m} = \frac{\partial \mathbf{I}_{D1}}{\partial \mathbf{V}_{d}}\Big|_{\mathbf{O}-\mathbf{n}t}$$

$$\boldsymbol{V_{\text{d}}} = \sqrt{\frac{2L}{\mu \boldsymbol{C_{\text{OX}}}\boldsymbol{W}}} \Big(\!\sqrt{\boldsymbol{I_{\text{T}}} - \boldsymbol{I_{\text{D1}}}} - \sqrt{\boldsymbol{I_{\text{D1}}}} \Big)$$

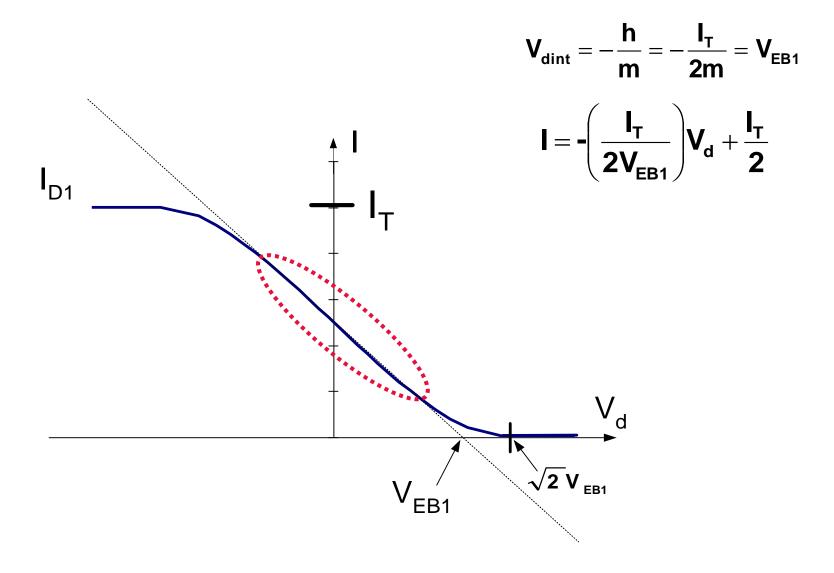
$$\mathbf{V}_{\text{d}} \qquad \frac{\partial \mathbf{V}_{\text{d}}}{\partial \mathbf{I}_{\text{D1}}} = \sqrt{\frac{2L}{\mu C_{\text{OX}} W}} \left(\frac{1}{2} \left(\mathbf{I}_{\text{T}} - \mathbf{I}_{\text{D1}} \right)^{-1/2} \left(-1 \right) - \frac{1}{2} \left(\mathbf{I}_{\text{D1}} \right)^{-1/2} \right) \bigg|_{\mathbf{Q}-\text{point}}$$

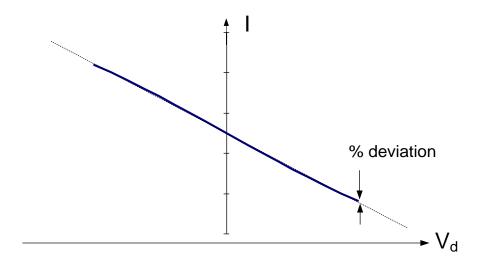
$$\frac{\partial V_d}{\partial I_{D1}} = -2\sqrt{\frac{L}{\mu C_{OX}W}}\sqrt{\frac{1}{I_T}}$$

$$\sqrt{\frac{L}{\mu C_{OX} W}} = \frac{V_{EB1}}{\sqrt{I_T}}$$

$$\frac{\partial V_{d}}{\partial I_{D1}} = -2 \frac{V_{EB1}}{I_{T}}$$

$$\mathbf{m} = \frac{\partial \mathbf{I}_{D1}}{\partial \mathbf{V}_{d}} = -\frac{\mathbf{I}_{T}}{2\mathbf{V}_{ER1}}$$

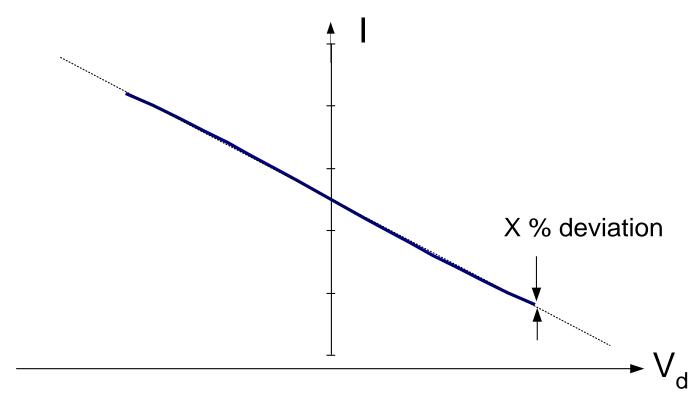




It can be shown that the deviation from the line in % is given by

$$\theta = 100\% \left(1 - \sqrt{1 - \frac{\left(\frac{V_d}{V_{EB}}\right)^2}{4}} \right)$$

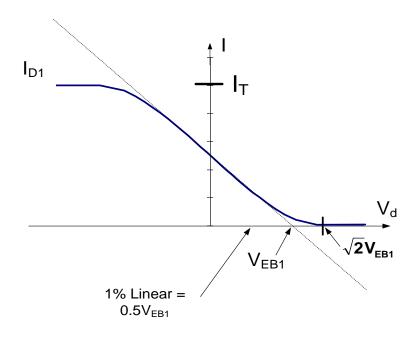
Vd/VEB	θ	Vd/VEB	θ	Vd/VEB	θ
0.02	0.005	0.22	0.607	0.42	2.23
0.04	0.020	0.24	0.723	0.44	2.45
0.06	0.045	0.26	0.849	0.46	2.68
0.08	0.080	0.28	0.985	0.48	2.92
0.1	0.125	0.3	1.13	0.5	3.18
0.12	0.180	0.32	1.29	0.52	3.44
0.14	0.245	0.34	1.46	0.54	3.71
0.16	0.321	0.36	1.63	0.56	4.00
0.18	0.406	0.38	1.82	0.58	4.30
0.2	0.501	0.4	2.02	0.6	4.61



A 1% deviation from the straight line occurs at

$$V_d \cong 0.3 V_{EB}$$
 and a 0.1% variation occurs at $V_d \cong \frac{V_{EB}}{10}$

What swings on drain currents are typical when using the differential pair in an amplifier?



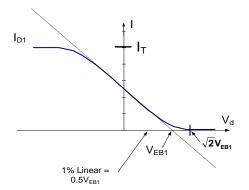
Assume the differential amplifier is the input stage to an op amp with gain Av and signal swing V_{OUTpp}

The differential swing at the input is thus

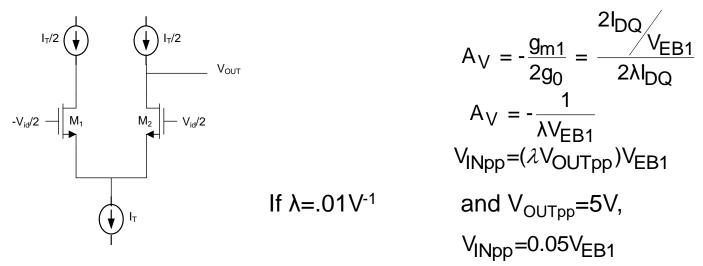
$$V_{\text{INpp}} = \frac{V_{\text{OUTpp}}}{A_{\text{V}}}$$

What swings on drain currents are typical when using the differential pair in an amplifier?

$$V_{INpp} = \frac{V_{OUTpp}}{A_{V}}$$



If the amplifier is the simple differential amplifier with current source loads



This results in a very small nonlinearity and a very small change in current When used in two-stage structure, even much smaller!

Programmable Filter Structures

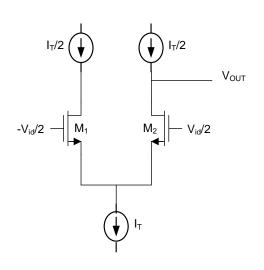
$$|\omega_0| = \frac{g_m}{C}$$

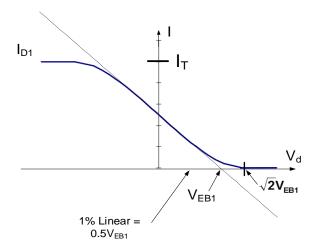
Often want to program or trim filters

Applicable in wide variety of filter architectures (here showing integrator-based)

Attractive to do this by adjusting g_m , in part, because g_m can be continuously adjustable with some transconductance devices

What input range is possible when using the tail current to program the OTA (i.e. after W/L fixed)?



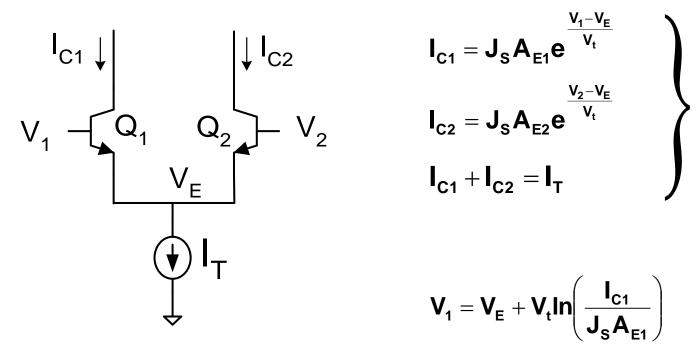


$$g_{\scriptscriptstyle m} = \mu C_{\scriptscriptstyle
m OX} rac{W}{L} \ V_{\scriptscriptstyle EB} == \sqrt{I_{\scriptscriptstyle T}} \sqrt{\mu C_{\scriptscriptstyle
m OX} rac{W}{L}}$$

$$\mathbf{V}_{\text{dx}} = \pm \sqrt{\frac{2L}{\mu C_{\text{ox}} W}} \left(\sqrt{I_{\text{T}}} \right)$$

- Input signal swing decreases linearly with decreases in g_m for fixed W/L
- One decade reduction in g_m results in one decade decrease in signal swing
- One decade reduction in g_m requires two decade decrease in I_T
- Though MOS OTA can have very good single swing with large V_{EB}, very limited tail current programmability with basic MOS OTA
- There are, however, other ways to program MOS OTA without big penalty in signal swing

Bipolar Differential Pair



$$\begin{aligned} &\textbf{I}_{\text{C1}} = \textbf{J}_{\text{S}} \textbf{A}_{\text{E1}} \textbf{e}^{\frac{\textbf{V}_{1} - \textbf{V}_{\text{E}}}{\textbf{V}_{\text{t}}}} \\ &\textbf{I}_{\text{C2}} = \textbf{J}_{\text{S}} \textbf{A}_{\text{E2}} \textbf{e}^{\frac{\textbf{V}_{2} - \textbf{V}_{\text{E}}}{\textbf{V}_{\text{t}}}} \\ &\textbf{I}_{\text{C1}} + \textbf{I}_{\text{C2}} = \textbf{I}_{\text{T}} \end{aligned} \right)$$

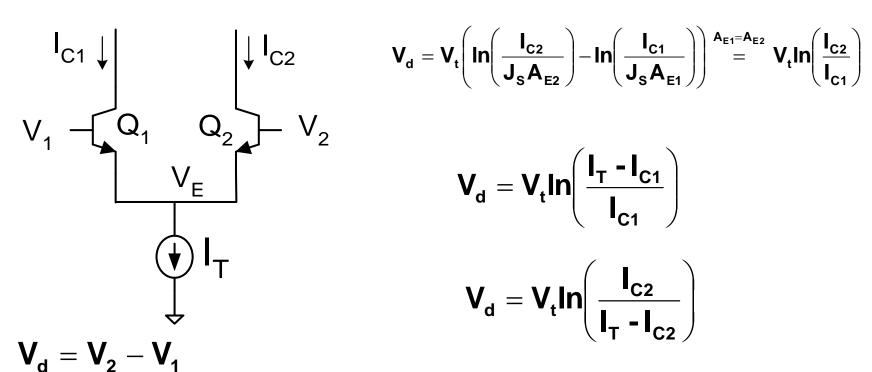
$$\mathbf{V_1} = \mathbf{V_E} + \mathbf{V_t} \mathbf{In} \left(\frac{\mathbf{I_{C1}}}{\mathbf{J_s A_{E1}}} \right)$$

$$\mathbf{V_2} = \mathbf{V_E} + \mathbf{V_t} \mathbf{In} \left(\frac{\mathbf{I_{C2}}}{\mathbf{J_S A_{E2}}} \right)$$

$$V_d = V_2 - V_1$$

$$\mathbf{V_d} = \mathbf{V_t} \!\! \left(\! \mathbf{In} \! \left(\frac{\mathbf{I_{C2}}}{\mathbf{J_s A_{E2}}} \right) \!\! - \! \mathbf{In} \! \left(\frac{\mathbf{I_{C1}}}{\mathbf{J_s A_{E1}}} \right) \! \right)^{\mathbf{A_{E1} = A_{E2}}} \mathbf{V_t In} \! \left(\frac{\mathbf{I_{C2}}}{\mathbf{I_{C1}}} \right)$$

Bipolar Differential Pair



$$\mathbf{V_{d}} = \mathbf{V_{t}} \left(\text{In} \left(\frac{\mathbf{I_{C2}}}{\mathbf{J_{S}A_{E2}}} \right) - \text{In} \left(\frac{\mathbf{I_{C1}}}{\mathbf{J_{S}A_{E1}}} \right) \right) \overset{\mathbf{A_{E1} = A_{E2}}}{=} \mathbf{V_{t}In} \left(\frac{\mathbf{I_{C2}}}{\mathbf{I_{C1}}} \right)$$

$$\mathbf{V_d} = \mathbf{V_t} \mathbf{In} \left(\frac{\mathbf{I_T} - \mathbf{I_{C1}}}{\mathbf{I_{C1}}} \right)$$

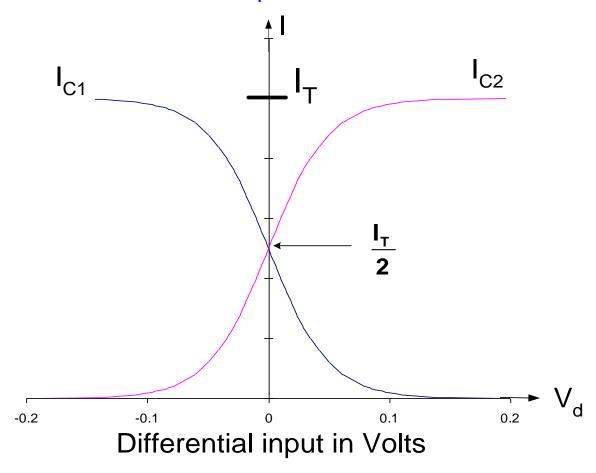
$$\mathbf{V_d} = \mathbf{V_t} \mathbf{In} \left(\frac{\mathbf{I_{C2}}}{\mathbf{I_T} - \mathbf{I_{C2}}} \right)$$

At
$$I_{C1} = I_{C2} = I_T/2$$
, $V_d = 0$

As I_{C1} approaches 0, V_d approaches infinity

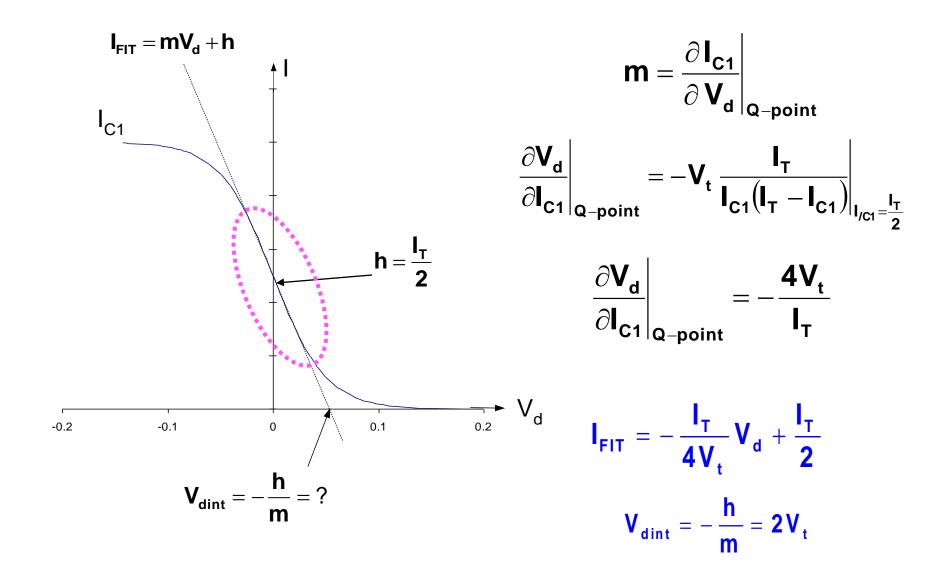
As I_{C1} approaches I_T, V_d approaches minus infinity Transition much steeper than for MOS case

Transfer Characteristics of Bipolar Differential Pair

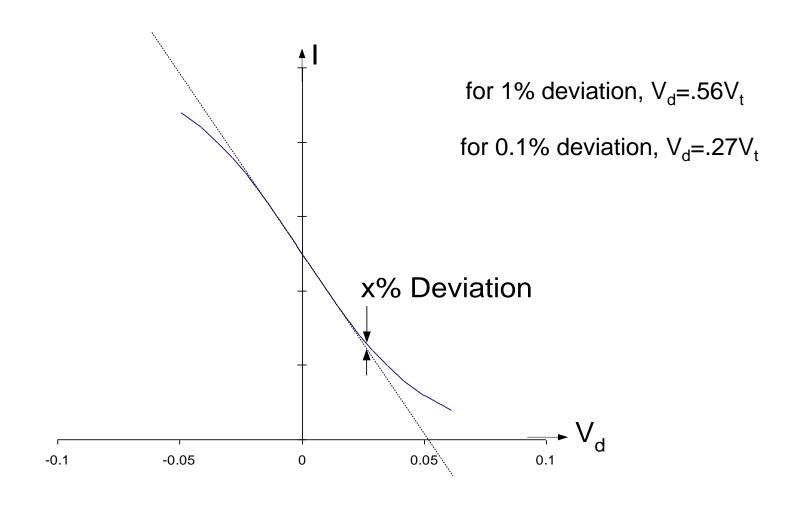


Transition much steeper than for MOS case Asymptotic Convergence to 0 and I_T

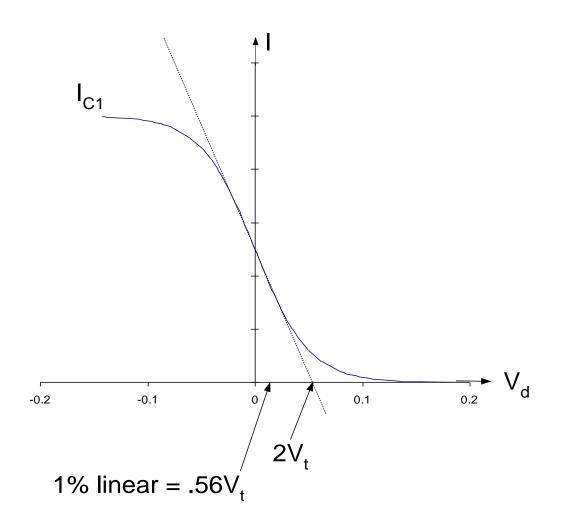
Signal Swing and Linearity of Bipolar Differential Pair



Signal Swing and Linearity of Bipolar Differential Pair



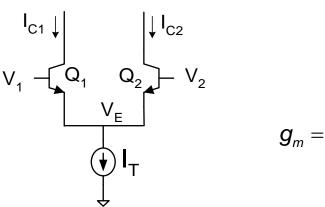
Signal Swing and Linearity of Bipolar Differential Pair



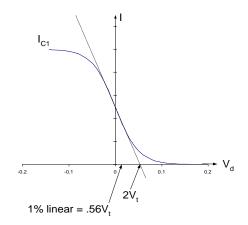
Signal Swing and Linearity Summary

- Signal swing of MOSFET can be rather large if V_{EB} is large but this limits gain
- Signal swing of MOSFET degrades significantly if V_{EB} is changed for fixed W/L
- Bipolar swing is very small but independent of g_m
- Multiple-decade adjustment of bipolar g_m is practical
- Even though bipolar input swing is small, since gain is often very large, this small swing does usually not limit performance in feedback applications

What input range is possible when using the tail current to program the OTA?



$$g_m = \frac{I_T}{2V_t}$$



- Input signal swing not affected by I_T
- Multi-decade adjustment of g_m with I_T without degrading signal swing

Stay Safe and Stay Healthy!

End of Lecture 31