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Transconductor Design



Review from last lecture

Leapfrog Filters
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Introduced by Girling and Good, Wireless World, 1970

This structure has some very attractive properties and is widely used though

the real benefits and limitations of the structure are often not articulated
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Review from last lecture
Implications of Theorem 1
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If a component in a biguad changes a little, there is often a large change
in the passband gain characteristics (depicted as bandpass)
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Review from last lecture
Implications of Theorem 1
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Good doubly-terminated LC networks often much less sensitive to
most component values in the passband than are cascaded biguads !

This is a major advantage of the LC networks but can not be applied practically
in most integrated applications or even in pc-board based designs



Doubly-terminated Ladder Network with Low Passband Sensitivities
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Lossless LC Network
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eview, from last lecture : : :
onsider now onefy the set of equations and disassociate them from

the circuit from where they came
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Review from last lecture

Bandpass Leapfrog Structures

Consider lowpass to bandpass transformations

Un-normalized
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Review from last lecture

Bandpass Leapfrog Structures
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Integrators Corresponding to Third-order lowpass
Lossless Network leapfrog filter
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Sixth-order bandpass
leapfrog filter



Review from last lecture

Bandpass Leapfrog Structures
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“Loss” at input and/or output can usually be incorporated into finite-Q
terminating biquads instead of requiring additional voltage amplifiers



view Trom last lecture

Banﬁpass Leapfrog Structures

Integrator-based biquads OTA-C Implementations
(Concept)

Infinite Q bandpass biquad
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(Not Differential)



Review froE last lectu

Bandpass Leapfrog Structures

Integrator-based biquads OTA-C Implementations
Infinite Q bandpass biquad

+ BW.
—~ém =
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Multiple inputs can be added to lossy integrator too!



Review from last lecture

Bandpass Leapfrog Structures
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Note the lossless biquads are infinite Q structures !

Is it easy or practical to implement infinite Q biquads?

Yes — have shown by example in g,-C family and also easy in other
families

Are there stability concerns about the infinite Q biquads?

Stability of overall leapfrog structure of concern, not stability of individual biquads
Overall leapfrog structure is robust with low passband sensitivities !



Review from last legture
Leapfrog Implementations
Fifth-order Lowpass Leapfrog with OTAs
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VszT(Vz_V4) V, = S (V5—V7)
Practically can either fix g,,s and vary capacitors or fix capacitors and vary g,,'s




Leapfrog Filters
A Seminal Contribution
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A valuable contribution ?

A timely contribution ?

A clever idea?

Would someone else have come up with it had
Girling and Good not made the discovery?
Example of unlikely publication making major
disclosure



Leapfrog Filters
A Seminal Contribution
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Transconductor Design

Transconductor-based filters depend directly on the g,, of the transconductor

Feedback is not used to make the filter performance insensitive to the
transconductance gain

Linearity and spectral performance of the filter strongly dependent upon the
linearity of the transconductor

Often can not justify elegant linearization strategies in the transconductors
because of speed, area, and power penalties



Seminal Work on the OTA

OTA Obsoletes Op Amp

by C.F Wheatley
H.A. Wittlinger

From:

1969 N.E.C. PROCEEDINGS
December 1969



Current Mirror Op Amp W/O CMFB
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Basic OTA based upon differential pair
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Differential output OTA based upon differential pair
[
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CMFB needed for the two output biasing current sources



Differential output OTA based upon differential pair
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CMFB needed for the two output biasing current sources



IOUT

Telescopic Cascode OV'DDFA

VDD
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. . Current Mirror Bias
Current Mirror Bias

VSS

Standard p-channel Cascode Mirror Wide-Swing p-channel Cascode Mirror

» Current-Mirror p-channel Bias to Eliminate CMFB
* Only single-ended output available



Telescopic Cascode OTA

out
— 1+ —>
9m \|/DD
-~ —
lout N Ve |
M M
Vg2
L | ]
M7 M8
|OUT IOUT

=
1
<

CMFB needed



Review from last lecture

Telescopic Cascode OTA
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Single-ended High-Frequency TA
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Signal Swing and Linearity
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Ideal Scenario:

Completely Linear over Input and Output Range



Signal Swing and Linearity
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Realistic Scenario:
» Modest Nonlinearity throughout Input Range

» But operation will be quite linear over subset of this range



Signal Swing and Linearity
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Linearity of Amplifiers

VDD

Strongly dependent upon linearity of transconductance of differential pair



Differential Input Pairs
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Bipolar Differential Pair



MOS Differential Pair
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MOS Differential Pair

Vo= e - )

Vo o M - )

What values of V4 will cause all of the current to be steered to the left or the right ?

Voo =2 )

MC, W




Transfer Characteristics of MOS Differential Pair

Vo= o2 e - i) v, =iJH§;W(ﬁ)

ID2




Q-point Calculations for MOS Differential Pair
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Vix = i\/EVEB



Transfer Characteristics of MOS Differential Pair

Vy = &= (\/IDz_\/IT'IDz)

HC W

I
b1 | b2

B |
o \/EVEB \/EVEB

Vg affects linearity

How linear is the amplifier ?



low linear Is the amplifier ?

Vy = ”[.ICZOEW(\/IT —Ips _\/IDl)

Consider the fit line:

l=mV, +h

When V=0, I=1/2, thus
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How linear is the amplifier ?
Oly,

oV,

l=mV,+h m =
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How linear Is the amplifier ?




How linear Is the amplifier ?

o It can be shown that the deviation
from the line in % is given by

2
% deviation (V%/ )
| 0 =100%| 1-141- 4EB

- V4
Vd/VEB 0 Vd/VEB 0 Vd/VEB 0
0.02 0.005 0.22 0.607 0.42 2.23
0.04 0.020 0.24 0.723 0.44 2.45
0.06 0.045 0.26 0.849 0.46 2.68
0.08 0.080 0.28 0.985 0.48 2.92
0.1 0.125 0.3 1.13 0.5 3.18
0.12 0.180 0.32 1.29 0.52 3.44
0.14 0.245 0.34 1.46 0.54 3.71
0.16 0.321 0.36 1.63 0.56 4.00
0.18 0.406 0.38 1.82 0.58 4.30

0.2 0.501 0.4 2.02 0.6 4.61



How linear Is the amplifier ?

X % deviation

A 1% deviation from the straight line occurs at

. V,
V,=0.3Vz; anda0.1% variation occurs at V= -E8
10



What swings on drain currents are typical when
using the differential pair in an amplifier?

ID1

O.SVEB]_

Assume the differential ampilifier is the input stage to an op amp with gain Av and
signal swing Vg rp,

The differential swing at the input is thus

v, _VOUTpp
INpp— AV




What swings on drain currents are typical when
using the differential pair in an amplifier?

i |
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/VEB{ ‘?/EVEBl
1% Linear =
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v, _VOUTpp
INpp— AV

If the amplifier is the simple differential amplifier with current source loads

2Ibg
Hz@ ® I/2 Ay, = - Im1 — VEBl
Vour v 290 ZAIDQ
1
V2 ‘”1"1 MZ“‘ Vi2 Av = AVEB1
ViNpp=(AVouTpp) VEB1
d)' If A=.01V- and Voyrpp=5V,

| ViNpp=0-05VER1

This results in a very small nonlinearity and a very small change in current
When used in two-stage structure, even much smaller!



Programmable Filter Structures

VA—+ 1 VB V, y
__sCq y
Ve C l

9
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Often want to program or trim filters

Applicable in wide variety of filter architectures (here showing integrator-based)

Attractive to do this by adjusting g,,, in part, because g, can be
continuously adjustable with some transconductance devices



What input range is possible when using the tall
current to program the OTA (i.e. after WiL fixed)?
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Input signal swing decreases linearly with decreases in g,, for fixed W/L

One decade reduction in g, results in one decade decrease in signal swing
One decade reduction in g, requires two decade decrease in |;

Though MOS OTA can have very good single swing with large Vgg, very limited
tail current programmability with basic MOS OTA

There are, however, other ways to program MOS OTA without big penalty in

signal swing



Bipolar Differential Pair
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Bipolar Differential Pair

vV, _EQl Qz} Vs

Ve vd:vtln['T 'mj
ICl
- |
Vd:VtIn£ == J
T ICZ
V, =V, -V,

As |-, approaches 0, V, approaches infinity

As |-, approaches I, V4 approaches minus infinity
Transition much steeper than for MOS case

I I | | Ae1=Ag
C1 i i C2 V, =V,|In| —— |-In| — = Vn
JSAEZ JSAEl I



Transfer Characteristics of Bipolar Differential Pair
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Differential input in Volts

Transition much steeper than for MOS case
Asymptotic Convergence to 0 and I



Signal Swing and Linearity of Bipolar Differential Pair
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Signal Swing and Linearity of Bipolar Differential Pair

for 1% deviation, V4=.56V,

Ny T for 0.1% deviation, V,=.27V,

\){% Deviation
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Signal Swing and Linearity of Bipolar Differential Pair

T

1% linear = .56V,



Signal Swing and Linearity Summary

 Signal swing of MOSFET can be rather large if
Vg IS large but this limits gain

 Signal swing of MOSFET degrades significantly if
Vg IS changed for fixed W/L

 Bipolar swing is very small but independent of g,

* Multiple-decade adjustment of bipolar g, Is
practical

* Even though bipolar input swing is small, since
gain is often very large, this small swing does
usually not limit performance in feedback
applications



What input range is possible when using the tall
current to program the OTA ?

IC]_ l l Ic2 |<:1

v, Lo I}V \

On =% K
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2v,
1% linear = .56V,
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* Input signal swing not affected by I
« Multi-decade adjustment of g,, with |+ without degrading signal swing
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Stay Safe and Stay Healthy !







